Math 241
 Winter 2024
 Lecture 5

Feb 19-8:47 AM

Class QZ 3
In right triangle $A B C, \sin A=\frac{5}{13}$,
Complete the chart below

$\sin A=5 / 13 \checkmark$	$\csc A=13 / 5 \checkmark$
$\operatorname{Cos} A=12 / 13^{\checkmark}$	$\operatorname{Sec} A=13 / 12$
$\tan A=5 / 12^{\checkmark}$	$\cot A=12 / 5$

hypotenuse

$$
\begin{aligned}
x^{2}+5^{2} & =13^{2} \\
x^{2}+25 & =169 \\
x^{2} & =144 \\
x & =12
\end{aligned}
$$

Given $\tan \theta=\frac{4}{7}$ and $0^{\circ}<\theta<90^{\circ}$
$\sin \theta=\frac{4}{\sqrt{65}}=\frac{4 \sqrt{65}}{65} \csc \theta=\frac{\sqrt{65}}{4}$ $0<\theta<\frac{\pi}{2}$
$\cos \theta=\frac{7}{\sqrt{65}}=\frac{7 \sqrt{65}}{65} \operatorname{Sec} \theta=\frac{\sqrt{65}}{7}$

$$
7^{2}+4^{2}=x^{2}
$$

$$
\tan \theta=\frac{4}{7}
$$

$$
\cot \theta=\frac{7}{4}
$$

$$
49+16=x^{2}
$$

$$
\sin (-\theta)=-\sin \theta=-\frac{4 \sqrt{65}}{65} \quad \csc (-\theta)=-\csc \theta=-\frac{\sqrt{65}}{4} \quad x=\sqrt{65}
$$

$$
\cos (-\theta)=\cos \theta=\frac{7 \sqrt{65}}{65} \quad \sec (-\theta)=\sec \theta=\frac{\sqrt{65}}{7}
$$

$$
\tan (-\theta)=-\tan \theta=\frac{-4}{7} \quad \cot (-\theta)=-\cot \theta=-\frac{7}{4}
$$

Jan 9-8:05 AM

Simplify

Simplify

$$
\begin{array}{ll}
\csc ^{2} x-\cot ^{2} x-\cos ^{2} x & 1+\cot ^{2} x=\csc ^{2} x \\
=1+\cot ^{2} x-\cot ^{2} x-\cos ^{2} x & \sin ^{2} x+\cos ^{2} x=1 \\
=1-\cos ^{2} x=\sin ^{2} x & \sin ^{2} x=1-\cos ^{2} x
\end{array}
$$

$$
\begin{aligned}
& \tan ^{3} x \cdot \csc ^{3} x \\
& =\frac{\sin ^{3} x}{\cos ^{3} x} \cdot \frac{1}{\sin ^{3} x}=\frac{1}{\cos ^{3} x}=\left(\frac{1}{\cos x}\right)^{3} \\
& =\sec ^{3} x
\end{aligned}
$$

Simplify
Recall

$$
\begin{aligned}
\frac{\sec ^{2} \theta-1}{\cot ^{2} \theta}-\frac{1+\tan ^{2} \theta}{\csc ^{2} \theta-1} \quad & 1+\tan ^{2} \theta=\sec ^{2} \theta \\
=\frac{\sec ^{2} \theta-1}{\cot ^{2} \theta}-\frac{\sec ^{2} \theta}{\cot ^{2} \theta} \theta= & \frac{\sec ^{2} \theta-1-\sec ^{2} \theta}{\cot ^{2} \theta} \\
= & \frac{-1}{\cot ^{2} \theta}=-\left(\frac{1}{\cot \theta}\right)^{2} \\
& =-\tan ^{2} \theta
\end{aligned}
$$

Simplify

$$
L C D=(1-\operatorname{Sec} x)(1+\operatorname{Sec} x)
$$

$$
\frac{1}{1-\sec x}+\frac{1}{1+\sec x}
$$

$$
=\frac{1}{1-\operatorname{Sec} x} \cdot \frac{1+\operatorname{Sec} x}{1+\operatorname{Sec} x}+\frac{1}{1+\operatorname{Sec} x} \cdot \frac{1-\operatorname{Sec} x}{1-\operatorname{Sec} x}
$$

$$
=\frac{1+\sec x+1-\sec x}{(1-\sec x)(1+\sec x)}=\frac{2}{1-\sec ^{2} x}
$$

$$
(A-B)(A+B)
$$

$$
A^{2}-B^{2}
$$

Recall

$$
=\frac{2}{1-\left(1+\tan ^{2} x\right)}
$$

$$
\begin{aligned}
1+\tan ^{2} x=\sec ^{2} x & =\frac{2}{x-1-\tan ^{2} x} \\
& =-2 \cdot \frac{1}{\tan ^{2} x} \\
& =-2 \cot ^{2} x
\end{aligned}
$$

Expand : Simplify

$$
\begin{aligned}
& \left(1+\cos ^{2} \alpha\right)\left(1+\tan ^{2} \alpha\right) \\
& =1+\tan ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha \cdot \tan ^{2} \alpha \\
& =1+\tan ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha \cdot \frac{\sin ^{2} \alpha}{\cos ^{2} \alpha} \\
& =\sec ^{2} \alpha+\cos ^{2} \alpha+\sin ^{2} \alpha \\
& =\sec ^{2} \alpha+1
\end{aligned}
$$

Factor, then Simplify

$$
\begin{aligned}
& \sin ^{2} x+\cot ^{2} x \cdot \sin ^{2} x \\
& =\sin ^{2} x\left(1+\cot ^{2} x\right) \\
& =\sin ^{2} x \cdot \csc ^{2} x=(\sin x \cdot \csc x)^{2}=1^{2}=1
\end{aligned}
$$

factor $\sec ^{2} x+6 \tan x+4$ Hint: what do we

$$
\begin{aligned}
& =1+\tan ^{2} x+6 \tan x+4 \quad \text { know about } \\
& =\tan ^{2} x+6 \tan x+5 \\
& =(\tan x+1)(\tan x+5)
\end{aligned}
$$

Hint:
How do We
factor

$$
A^{2}+6 A+5=(A+1)(A+5)
$$

Evaluate:

$$
\begin{aligned}
& \text { Evaluate: } \\
& \left(\sin ^{2}\left(25^{\circ}\right)-5+\cos ^{2}\left(25^{\circ}\right)\right)^{3} \\
& =(1-5)^{3}=(-4)^{3}=-64
\end{aligned}
$$

$$
\begin{aligned}
& 5(\underbrace{\sec ^{2}\left(-100^{\circ}\right)-\tan ^{2}\left(-100^{\circ}\right)}_{e^{1}})
\end{aligned} \begin{aligned}
& -5 \\
& \\
& \text { Recall } \\
& 1+\tan ^{2} x=\operatorname{Sec}^{2} x
\end{aligned} \quad \begin{aligned}
& 1=\sec ^{2} x-\tan ^{2} x
\end{aligned}
$$

Jan 9-8:44 AM

Simplify

$$
\begin{aligned}
& \alpha-\frac{\cos ^{2} x}{1-\sin x} \\
=2-\frac{1-\sin ^{2} x}{1-\sin x} & \text { Recall } \\
=2-\frac{(1+\sin x)(1-\sin x)}{1-\sin x} & =2-(1+\sin x) \\
& =2-1-\sin x \\
& =1-\sin x
\end{aligned}
$$

Class QB 4
In right triangle $A B C, \cot A=\frac{4}{3}$, Complete the chart below

$$
\begin{array}{ll}
\sin A=\frac{3}{5} & \csc A=\frac{5}{3} \\
\cos A=\frac{4}{5} & \sec A=\frac{5}{4} \\
\tan A=\frac{3}{4} & \cot A=\frac{4}{3} \text { Given }
\end{array}
$$

Draw 150° in standard position, find its ref. angle.

Draw 210° in Standard position, find its ref. angle

Draw $\frac{5 \pi}{4}$ radians in standard position, Convert it to degrees, find ref. angle in radians

$$
\begin{aligned}
& \frac{5 \pi}{4}=\frac{4 \pi}{4}+\frac{\pi}{4}=\pi+\frac{\pi}{4} \\
& \frac{5 \pi}{4} \text { Radian }=\frac{5 \pi}{4} \cdot \frac{450}{\pi} \\
&=225^{\circ}
\end{aligned}
$$

Draw $-\frac{7 \pi}{6}$ in standard position, find its ref. angle, Convert to degrees.

$$
\left.\begin{array}{rl}
-\frac{7 \pi}{6} & =\frac{-6 \pi}{6}+\frac{-\pi}{6} \\
& =-\pi+\frac{-\pi}{6} \quad \text { Ref. Angle } \frac{\pi}{6}
\end{array}\right\}
$$

famous angles:

0°	30°	45°	60°	90°	180°	270°
0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$

Sector with Central angle θ

Given $r=5 \mathrm{~cm}$ and $\theta=2$ radians.

$$
\begin{aligned}
& S=r \quad \theta=5 \cdot 2=10 \mathrm{~cm} . \\
& A=\frac{1}{2} r^{2} \theta=\frac{1}{2} \cdot 5^{2} \cdot 2=25 \mathrm{~cm}^{2}
\end{aligned}
$$

Jan 9-9:44 AM

The central angle of a Sector in a circle of radius 4 in . has a measure of 15°.

1) Draw, clearly label.
2) find the arc length

$$
\begin{aligned}
S & =r \theta \\
& =4 \cdot \frac{\pi}{12}=\frac{\pi}{3} \mathrm{in} .
\end{aligned}
$$

$$
15^{\circ}=15 \cdot \frac{\pi}{180}
$$

3) find its area.

$$
\begin{aligned}
& \text { find its area. } \quad=\frac{\pi}{12} \\
& A=\frac{1}{2} r^{2} \theta=\frac{1}{2} \cdot 4^{2} \cdot \frac{\pi}{12}=\frac{44 \cdot 4 \pi}{2 \cdot 12}=\frac{2 \pi}{3} \text { in. }
\end{aligned}
$$

find the shaded area below

$$
\theta=\frac{\pi}{2}
$$

Shaded area $=$

$$
\begin{gathered}
\substack{\text { langer } \\
\text { Sector }} \\
=\frac{1}{2} \cdot 8^{2} \cdot \frac{\pi}{2}-\frac{1}{2} \cdot 5^{2} \cdot \frac{\pi}{2} \\
=\frac{64 \pi}{4}-\frac{25 \pi}{4}=\frac{39 \pi}{4} \\
\text { Units. }
\end{gathered}
$$

find the area of the triangle below

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} b h \\
& =\frac{1}{2} \cdot 12 \cdot 8 \\
& =48 \mathrm{~cm}^{2}
\end{aligned}
$$

Find the area of the triangle below

14 in .

$$
\begin{aligned}
& 5^{2}+10^{2}=14^{2} \\
& 25+100=196 \\
& \text { Not a right Triangle }
\end{aligned}
$$

use Heron's formula
Area $=\sqrt{S(S-a)(S-b)(S-c)}$ where $S=\frac{a+b+c}{2}$

$$
\begin{aligned}
& =\sqrt{14.5(14.5-5)(14.5-10)(14.5-14)} S=\frac{5+10+14}{2} \\
& =\sqrt{309.9375} \approx 14.6 \mathrm{in}^{2}
\end{aligned}
$$

find the area of the triangle below
 SA
Two sides ז. angle between them

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2} \cdot 22 \cdot 18 \cdot \sin 20^{\circ} \approx 67.7 \mathrm{ft}^{2}
\end{aligned}
$$

find the area of the triangle below

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2} \cdot 5 \cdot 8 \cdot \sin 2^{0}
\end{aligned}=20 \sin 2
$$

Simplify

$$
\begin{aligned}
& (3 \sin x+4 \cos x)^{2}+(\underbrace{3 \sin x-4 \cos x)^{2} \cdot(3 A+4 B)}=9 A^{2}+12 A B \\
& +12 A B+16 B^{2} \\
& =9 \sin ^{2} x+24 \sin x \cos x+16 \cos ^{2} x+ \\
& 9 \sin ^{2} x-24 \sin x \cos x+16 \cos ^{2} x \\
& =18 \sin ^{2} x+32 \cos ^{2} x \\
& =18 \sin ^{2} x+\frac{18}{2} \cos ^{2} x+14 \cos ^{2} x \\
& =18\left(\frac{\sin ^{2} x+\cos ^{2} x}{1}\right)+14 \cos ^{2} x=18+14 \cos ^{2} x
\end{aligned}
$$

Simplify

$$
\begin{aligned}
&(3 \sin x+4 \cos x)^{2}+(4 \sin x-3 \cos x)^{2} \\
&= 9 \sin ^{2} x+24 \sin x \cos x+16 \cos ^{2} x+ \\
& 16 \sin ^{2} x=24 \sin x \cos x+9 \cos ^{2} x \\
&= 25 \sin ^{2} x+25 \cos ^{2} x
\end{aligned}=25\left(\sin ^{2} x+\cos ^{2} x\right) .
$$

Angle of elevation from a point on the ground to the top of a tree is 15°.

Tree is 12 ft from that point. How tall is the tree?
Drawing required.
 $\tan 15^{\circ}=\frac{h}{12}$ Cross-multiply

$$
\begin{aligned}
h & =12 \tan 15^{\circ} \\
& =3.215 \approx 3.2 \mathrm{ft}
\end{aligned}
$$

A building is 75 ft tall. Angle of depression to a point on the ground is 75. How far is the point from the building? Complete drawing required.

$$
\begin{aligned}
\tan 75^{\circ}=\frac{75}{d} & \quad \text { Point Ground } \\
d \cdot \tan 75^{\circ}=75 & =\frac{75}{\tan 75^{\circ}}=20.096 \\
& \approx 20 \mathrm{ft} \\
\tan 15^{\circ}=\frac{d}{75} & \begin{aligned}
d & =75 \tan 15^{\circ} \\
& \approx \text { Same answer. }
\end{aligned}
\end{aligned}
$$

Jose is 250 ft from a building.
There is a flag on top of the building.
Jose's angle of elevation to the top of building is 42°, and to the top of the flag is 45°.
How tall is the flag?
Complete drawing required.

$$
\begin{aligned}
\tan 42^{\circ} & =\frac{h}{250} \\
h & =250 \cdot \tan 42^{\circ} \\
& \approx 225 \mathrm{ft}
\end{aligned}
$$

find x using the drawing below

$$
\tan 20^{\circ}=\frac{50-y}{x}
$$

$$
\tan 15^{\circ}=\frac{y}{x}
$$

$$
x \tan 20^{\circ}=50 y
$$

$$
x \tan 15^{\circ}=y
$$

$$
\begin{aligned}
& x \tan 20^{\circ}=50-x \tan 15^{\circ} \\
& x \tan 20^{\circ}+x \tan 15^{\circ}=50 \\
& x\left(\tan 20^{\circ}+\tan 15^{\circ}\right)=50
\end{aligned} \quad \begin{aligned}
& x=\frac{50}{\tan 20^{\circ}+\tan 15^{\circ}} \\
& x \approx 79.124 \not 779
\end{aligned}
$$

Calculate $\tan 20^{\circ}+\tan 15^{\circ}$ Press x^{-1} now multiply by 50 .

$$
50 \div\left(\tan 20^{\circ}+\tan 15^{\circ}\right) \text { enter }
$$

Jan 9-11:30 AM

Verify

$$
\begin{aligned}
& \frac{\sin x}{1-\sin x}+\frac{\sin x}{1+\sin x}=\frac{\sqrt{2} \tan x \cdot \sec x}{L C D}=(1-\sin x)(1+\sin x)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sin x}{1-\sin x} \cdot \frac{1+\sin x}{1+\sin x}+\frac{\sin x}{1+\sin x} \cdot \frac{1-\sin x}{1-\sin x} \\
& =\frac{\sin x[1+\sin x+1-\sin x]}{(1-\sin x)(1+\sin x)}=\frac{2 \sin x}{1-\sin ^{2} x}=\frac{2 \sin x}{\cos ^{2} x} \\
& =2 \cdot \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}=2 \tan x \cdot \sec x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Verify } \\
& \begin{aligned}
& \frac{\sin ^{3} x+\cos ^{3} x}{\sin x+\cos x}=1-\sin x \cos x \text { Hint: } \\
& \begin{array}{l}
\text { Factor } \\
A^{3}+B^{3} \\
\\
=(A+B)\left(A^{2}-A B+B^{2}\right)
\end{array} \\
& \begin{aligned}
\frac{\sin ^{3} x+\cos ^{3} x}{\sin x+\cos x} & =\frac{(\sin x+\cos x)\left(\sin ^{2} x-\sin x \cos x+\cos ^{2} x\right)}{\sin x+\cos x} \\
& =1-\sin x \cos x
\end{aligned}
\end{aligned}
\end{aligned}
$$

Verify

$$
\begin{gathered}
\frac{\sec ^{2} \theta-6 \tan \theta+7}{\sec ^{2} \theta-5}=\frac{\tan \theta-4}{\tan \theta+2} \quad \begin{array}{l}
1+\operatorname{lan} \theta= \\
\text { Replace } \operatorname{Sec} \\
\text { Simplify, }
\end{array} \\
\frac{\sec ^{2} \theta-6 \tan \theta+7}{\sec ^{2} \theta-5}=\frac{1+\tan ^{2} \theta-6 \tan \theta+7}{1+\tan ^{2} \theta-5} \quad \begin{array}{l}
\text { Simplify } \\
\text { more }
\end{array} \\
=\frac{\tan ^{2} \theta-6 \tan \theta+8}{\tan ^{2} \theta-4}=\frac{(\tan \theta-4)(\tan \theta-2)}{(\tan \theta+2)(\tan \theta-2)} \\
=\frac{\tan \theta-4}{\tan \theta+2}
\end{gathered}
$$

Simplify

$$
\begin{aligned}
& \left(\tan x+\sin ^{2} x+\cos ^{2} x\right)\left(\tan x-\sin ^{2} x-\cos ^{2} x\right) \\
& =(\tan x+1)(\tan x-1) \\
& =\tan ^{2} x-1 \\
& =\sec ^{2} x-1+\tan ^{2} x=\sec ^{2} x \\
& \tan ^{2} x=\sec ^{2} x-1=\sec ^{2} x-2
\end{aligned}
$$

Verify

$$
\begin{aligned}
& \frac{\sec ^{3} x-\operatorname{Cos}^{3} x}{\sec x-\cos x}=\sec ^{2} x+\cos ^{2} x+1 \\
& \text { LHS }=\frac{(\sec x-\operatorname{Cos} x)\left(\operatorname{Sec}^{2} x+\widetilde{\operatorname{Sec} x \cos x}+\cos ^{2} x\right)}{\operatorname{Sec} x-\operatorname{Cos} x} \\
& \quad=\sec ^{2} x+1+\cos ^{2} x
\end{aligned}
$$

Class QZ 5
find the area of the triangle below

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} b c \sin A \\
c^{14 \mathrm{~cm}} \quad 30^{\circ} & =\frac{1}{2} \cdot 10 \cdot 14 \cdot \sin 30^{\circ} \\
& =\frac{1}{2} \cdot 10 \cdot 14 \cdot \frac{1}{2}=35 \mathrm{~cm}^{2}
\end{aligned}
$$

Jan 9-12:16 PM

